Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications

نویسندگان

  • Wolfgang Achtziger
  • Christian Kanzow
چکیده

We consider a difficult class of optimization problems that we call a mathematical program with vanishing constraints. Problems of this kind arise in various applications including optimal topology design problems of mechanical structures. We show that some standard constraint qualifications like LICQ and MFCQ usually do not hold at a local minimum of our program, whereas the Abadie constraint qualification is sometimes satisfied. We also introduce a suitable modification of the standard Abadie constraint qualification as well as a corresponding optimality condition, and show that this modified constraint qualification holds under fairly mild assumptions. Finally, we discuss the relation between our class of optimization problems with vanishing constraints and a mathematical program with equilibrium constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints

We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are a...

متن کامل

Constraint qualifications and optimality conditions for optimization problems with cardinality constraints

This paper considers optimization problems with cardinality constraints. Based on a recently introduced reformulation of this problem as a nonlinear program with continuous variables, we first define some problem-tailored constraint qualifications and then show how these constraint qualifications can be used to obtain suitable optimality conditions for cardinality constrained problems. Here, th...

متن کامل

Necessary and Sufficient Optimality Conditions for Mathematical Programs with Equilibrium Constraints∗

In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Various stationary conditions for MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary condition and show that it is sufficient for global or local optimality under some MPEC generalized conve...

متن کامل

Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.

متن کامل

Mathematical Programs with Equilibrium Constraints: Enhanced Fritz John-conditions, New Constraint Qualifications, and Improved Exact Penalty Results

Mathematical programs with equilibrium (or complementarity) constraints (MPECs for short) form a difficult class of optimization problems. The standard KKT conditions are not always necessary optimality conditions due to the fact that suitable constraint qualifications are often violated. Alternatively, one can therefore use the Fritz John-approach to derive necessary optimality conditions. Whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2008